If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+(2X)^2=40^2
We move all terms to the left:
X^2+(2X)^2-(40^2)=0
We add all the numbers together, and all the variables
3X^2-1600=0
a = 3; b = 0; c = -1600;
Δ = b2-4ac
Δ = 02-4·3·(-1600)
Δ = 19200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19200}=\sqrt{6400*3}=\sqrt{6400}*\sqrt{3}=80\sqrt{3}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{3}}{2*3}=\frac{0-80\sqrt{3}}{6} =-\frac{80\sqrt{3}}{6} =-\frac{40\sqrt{3}}{3} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{3}}{2*3}=\frac{0+80\sqrt{3}}{6} =\frac{80\sqrt{3}}{6} =\frac{40\sqrt{3}}{3} $
| 12÷13t+3÷26=81/78 | | 8x+4=-3x-7 | | 1/9(x+27)-1/3(x-3)=x-17 | | -16n=-32 | | n^2-n+10=0 | | x3-x2-0.25x+0.25=0 | | (2x4)x3=2x4(x)3 | | 12=9-k | | x2-11=0 | | x²-5x-11=0 | | 2x2+14x+9=0 | | 3d+7=10-d | | 7x-2(3x-16)=23 | | 4x+2=5x+29 | | 9x^2-6=2x+9 | | 5,8/x-62=4 | | 1/3(x+6)+1/7(x+7)=x+9 | | 2x+3(2-x)=3x–1 | | -3+9k=15 | | 4x^2-x^2-4x^2+4x=0 | | (2+2y)+2y=6 | | (X+3)(x-2)=5 | | d-4=-1311 | | -3+10k=37 | | (4x-3)/x=2 | | r+9+2r=4(3+2r)-3 | | 2.5=1/x-2 | | 4·3x=12·2x | | 5/7+x=1/4 | | x(x-2)=3x-5 | | 20x+6=8x | | x²-2x=3x-5 |